DRAFT REPORT MODAL ANALYSIS. NATURAL FREQUENCIES AND MODE SHAPES OF 3D BEAM

All dynamic analysis types are based on the following general equation of motion for a finite element system:

$$\begin{bmatrix} M \\ q \end{bmatrix} \{ \stackrel{\circ}{q} \} + \begin{bmatrix} C \\ n > n \\ n > 1 \\ n > n \\ n > 1 \\ n > 1 \\ n > n \\ n > 1 \\ n > n \\ n > 1 \\ n > n \\ n > 1 \\ n > 1$$

where: [M] mass matrix, [C] damping matrix, [K] stiffness matrix, $\{q\}$ nodal displacement vector, $\{\dot{q}\}$ nodal velocity vector, $\{\ddot{q}\}$ nodal acceleration vector, $\{F(t)\}$ load vector, (t) time.

Modal analysis

For modal analysis, the ANSYS program assumes free (unforced) vibration with no dumping, described by the following equation of motion:

$$\begin{bmatrix} M \\ q \end{bmatrix} \{ q \} + \begin{bmatrix} K \\ n \times n \end{bmatrix} \{ q \} = \{ 0 \}$$
(2)

The equation reduces to the eigenvalue problem:

$$\left(\left[K\right] - \omega^{2}\left[M\right]\right)\left\{q\right\} = \left\{0\right\}$$
(3)

We are interested in non-trivial solutions that meet the condition:

$$\det\left(\left[K\right] - \omega^2 \left[M\right]\right) = 0 \tag{4}$$

The above condition provides the natural frequencies ω_i . Each natural frequency is associated with the eigenvector $\{q\}_i$ describing the shape of the deformation at the free vibration with the frequency ω_i (mode shape). The smallest natural frequency is called fundamental frequency of vibration.

The mode shape is defined by relations between DOF – the magnitudes of the nodal displacements have no meaning. The eigenvector may be arbitrary scaled - it is usually normalized in relation to unity matrix or to mass matrix: $|q|_i [M] \{q\}_i = 1$.

PROBLEM

Find the first 8 natural frequencies and the associated mode shapes of the 3D cantilever beam.

Fig. 1. Cross-section of the beam

The analytical solution for one-dimensional beam model (bending only):

$$\omega_{1}^{s} = 3.5156 \cdot \frac{1}{l^{2}} \sqrt{\frac{EJ}{\rho A}},$$

$$\omega_{2}^{s} = 22.0346 \cdot \frac{1}{l^{2}} \sqrt{\frac{EJ}{\rho A}},$$

$$\omega_{i}^{s} = \left[\frac{(2i-1)\pi}{2}\right]^{2} \cdot \frac{1}{l^{2}} \sqrt{\frac{EJ}{\rho A}}, \qquad i = 3, 4...,$$
(5)

ATTENSION on the selection of units: SI (N, m, s, kg) or mod_SI (N, mm, s, t)

DRAFT REPORT

Number of elements=..... Number of nodes=..... Table 1a CASE1. Analyse the cantilever beam using solid elements (Solid185).

Mode	fraguanau f [1]=1	No. 16 m [mail/a]	Shape description				
1	frequency f _{FEM} [Hz]	Natural freq. w FEM [rad/s]			Table 1b. Theoretical results		
2					for a one-dimensional beam model (bending only):		
3					Mode	Natural Frequency	
4						ω _{Theory} [rad/s]	
5					1		
6					2		
7					3		
8					4		
				_			

Table 2 C A S E 2. Analyse the beam with fixed cross-section at z = 0 and pinned cross-section at z = L

Mode	frequency f FEM [Hz]	Natural freq. @FEM [rad/s]	Shape description
1			
2			
3			
4			
5			
6			
7			
8			

Table 3 C A S E 3 . Analyse the beam with fixed cross-sections.

Mode	frequency f FEM [Hz]	Natural freq. @FEM [rad/s]	Shape description
1			
2			
3			
4			
5			
6			
7			
8			

Table 3 C A S E 4. Analyse the rotating cantilever beam ($\omega y = 100 \ 1/s$).

Mode	frequency f FEM [Hz]	Natural freq. @FEM [rad/s]	Shape description
1			
2			
3			
4			
5			
6			
7			
8			

→ Final report should include:

- problem description
- short presentation of the FEM model (mesh, boundary conditions)
- table with obtained results (frequencies)
- \bullet graphs with distribution of normal stresses σz for the first 8 vibration modes
- discussion of results (comparison with simplified analytical solution)

Conclusions: